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@ The second, factor (Fac_B2), which provides less separation, and overall a weaker association with the landscape metrics, correlates with total chlorides concentration, soil
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apparent complex inter-relationship between the various

classes of landscape features. This concept is illustrated in
the Figure 5.

Discriminant analysis (DA) using a step-wise backward selection (Figure 3, right panel) of the invertebrate metrics classified the
sub-watersheds of the 3 ecoregions into unique sets around well-separated centroids.

® M‘ l | lod S ® ® he first factor (Fac_B1) of the canonical scores plot, from the backward DA provides most of the separation and in turn
correlates strongly with several classes of landscape metrics including: soil metrics, riparian landcover, in-stream nutrient and

sulfate concentrations, and the reach metrics.

Geophysical aspects of the landscape (e.g., hydrology,
{@edrock geology, soils and topography) are key drivers
determining land use and thus, landcover. A the same time,
however, the landscape influences deriving from land use
Physical Habitat (e.g., nitrogen from agriculture) are transported through, and
modulated by the soils, topography and other physical
features. (Figure 5).

(®Each LMR sub-watershed was sampled, via a kick net procedure (Klemm et al., 1998) to collect benthic macroinvertebrates over a 150 m reach (11 transects) at the pour point of
during three consecutive summer low-flow periods (1999 - 2001 (Figure 1).

@ Invertebrates (composite from all habitat types) were identified to the lowest possible taxonomic level and forty-six invertebrate metrics were computed (Table 5), and the
individual scores for each metric were averaged, by sub-watershed, over the three sampling years. However, these results may be misleading because of the high correlation observed between the 17 invertebrate metrics
selected by the backward procedure.

g The second, factor (Fac_B2), which provides less separation, and overall a weaker association with the landscape metrics,
rrelates with total chlorides concentration, soil metrics, catchment landcover and nitrate-N concentration.

Water Quality
Nutrients & Sediments

@ Spatial Analysis was conducted using the ArcView Geographic Information System (GIS; ESRI, Redlands, CA) with all spatial data converted an Albers Conical Equal Area projection. Figure 5

The use of a step-wise, forward selection DA procedure on the invertebrate metrics (Figure 3, left panel) produces a similar
overall result but with less separation of the sub-watersheds by ecoregion.

{® Grab samples for water chemistry were collected at multiple times over a three-year period and analyzed quarterly using USEPA Standard Methods (USEPA, 1979).

@ Statistical Procedures were conducted using Systat 10 software (SPSS, Chicago, IL). Spearman correlations were computed to examine the strength of the relationships between the
invertebrate metrics and landscape metrics/water chemistry concentrations (p</= 0.05 considered significant). A one-way ANOVA (Boniferroni estimate of probabilities) was

% confid llipse for the sub-watersheds of the Till Plain. .
employed to compare the differences in the means of the metrics (both invertebrate and landscape) for the sub-watersheds in the 3 ecoregions. A step-wise discriminant analysis (DA) 5% confidence e {pse i Su( bbbt Ae ! i afn . i . ® Refe re n C eS . @®
procedure was employed to compare the three ecoregions with respect to the overall pattern of the invertebrate metrics. The forward DA is based on 7 invertebrate metrics with little covariance among the metrics. However like the backward DA

{E5th factors (Fac_F1 & Fac_F2) in the canonical scores plot, correlate with several landscape metrics.

In the forward analysis, the sub-watersheds of the Drift and Darby ecoregions are separated but both also overlap with the
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